Design anD Fabrication oF suspenDeD-gate MosFets For MeMs resonator, switch anD MeMory applications
نویسنده
چکیده
............................................................................................................................... VERSION ABREGEE ............................................................................................................... INTRODUCTION....................................................................................................................1 CHAPTER I MEMS FOR COMMUNICATIONS SYSTEMS, STATE-OF-THE-ART AND CHALLENGES...............................................................................................................5 I.A. MEMS-BASED WIRELESS CIRCUIT ARCHITECTURES: WHY?............................................6 I.A.1. Time reference components .....................................................................................6 I.A.2. Quartz oscillator .......................................................................................................7 I.A.3. MEMS-based integrated oscillator...........................................................................7 I.B. RESONATOR ARCHITECTURES..........................................................................................7 I.B.1. Piezoelectric resonators (Bulk Acoustic Wave BAW)...........................................7 I.B.2. Electrostatic resonators.............................................................................................8 I.B.2.a. Flexural mode architectures..............................................................................9 I.B.2.b. Bulk or Lamé mode..........................................................................................10 I.B.2.c. Coupled resonator architecture.......................................................................11 I.C. ELECTROSTATIC AND PIEZOELECTRIC RESONATORS STATE-OF-THE-ART, CHARACTERISTICS AND PERFORMANCES..............................................................................12 I.D. APPLICATIONS OF MEMS RESONATORS AND SPECIFICATIONS.....................................19 I.D.1. Local oscillator.......................................................................................................19 I.D.2. Voltage Control Oscillator (VCO) .........................................................................19 I.D.3. Filters......................................................................................................................20 I.E. INTEREST OF MOSFET DETECTION FOR MEMS RESONATORS .....................................21 REFERENCES .......................................................................................................................22 CHAPTER II – STATIC AND DYNAMIC MODELING OF THE SG-MOSFET .........25 II.A. STATIC MODELING OF A CLAMPED-CLAMPED SG-MOSFET .......................................27 II.A.1. Suspended-gate MOSFET electrical modeling.....................................................27 II.A.2. Electro-mechanical modeling ...............................................................................28 II.A.2.a. Pull-in and pull-out effects description ..........................................................29 II.A.2.b. Beam shape during mechanical deflection.....................................................31 II.A.2.c. Total SG-MOSFET drain current...................................................................32 II.A.3. Model validation ...................................................................................................34 II.A.4. Electrical air-gap for SG-MOSEFT ......................................................................35 II.A.5. Disturbing forces on nano-gap devices The Casimir effect................................36 II.B. DYNAMIC MODELING OF THE RSG-MOSFET..............................................................38 II.B.1. Mechanical dynamic behavior and mode shape....................................................38 II.B.1.a. Nodes on CC-beam.........................................................................................40 II.B.1.b. Effect of stress on the resonant frequency......................................................41 II.B.2. General study of non-linearities in a capacitive MEMS resonator .......................43 II.B.3. Mechanical and electrical non-linearities for a CC-beam resonator .....................45 II.B.3.a. Mechanical non-linearities.............................................................................46 II.B.3.b. Electrical non-linearities................................................................................46 II.B.3.c. Influence of mechanical and electrical non-linearities on the response ........46 II.B.4. Quality factor ........................................................................................................47 II.B.4.a. Stored energy in mechanical resonators ........................................................47 II.B.4.b. Energy dissipation in resonator .....................................................................48 II.B.4.b.i Structural or thermoelastic damping (TED) ..........................................48 II.B.4.b.ii Dry friction or Coulomb damping ........................................................50 II.B.4.b.iii Gas or viscous damping.......................................................................51 II.B.4.b.iv Support loss damping ..........................................................................53 II.B.4.b.v Surface loss damping............................................................................54 II.B.4.b.vi Other source of losses..........................................................................54 II.B.5. Equivalent electrical circuit model........................................................................55 II.B.5.a. General analysis on pure capacitive resonator..............................................55 II.B.5.b. Influence of coupling capacitance on signal transmission.............................56 II.B.5.c. Influence of coupling capacitance on signal measurement ............................56 II.B.5.d. Resonator with MOSFET detection................................................................60 II.B.5.e. Comparison between capacitive and MOSFET detection ..............................61 II.C. RSG-MOSFET MODEL FOR CIRCUIT DESIGN...............................................................62 II.D. MODELING PERSPECTIVES OF THE RESONANT SG-MOSFET......................................63 REFERENCES .......................................................................................................................64 CHAPTER III – SG-MOSFET FABRICATION PROCESSES........................................67 III.A. METAL-BASED SG-MOSFET PROCESS ......................................................................69 III.A.1. Process description ..............................................................................................69 III.A.1.a. Active zones definition and silicon dry oxidation .........................................69 III.A.1.b. Source and drain implantation .....................................................................70 III.A.1.c. Polysilicon sacrificial layer ..........................................................................70 III.A.1.d. Polyimide sacrificial layer ............................................................................71 III.A.1.e. CMP of polyimide and polysilicon sacrificial layers ....................................71 III.A.1.f. Contact and structural layer..........................................................................72 III.A.1.g. Metal-gate layer............................................................................................73 III.A.1.h. Releasing step ...............................................................................................73 III.A.2. Structural layer stress investigation.....................................................................74 III.A.2.a. Stress measurement technique ......................................................................74 III.A.2.b. Residual stress and characteristic on Al-based film .....................................74 III.A.2.c. Temperature effect.........................................................................................75 III.A.2.d. Stress measurement from devices..................................................................77 III.A.2.e. Stress gradient measurement ........................................................................78 III.A.2.f. Young’s modulus extraction...........................................................................79 III.A.2.g. Summary of sputtered Al-Si1% properties....................................................80 III.A.3. Conclusion and limitations of the metal gate SG-MOSFET process ..................80 III.B. SILICON RESONATOR PROCESS....................................................................................81 III.B.1. Wafer pre-processing...........................................................................................82 III.B.2. Sacrificial layer etching .......................................................................................82 III.B.2.a. HF vapor etching ..........................................................................................82 III.B.2.b. BHF etching combined with CPD.................................................................82 III.B.3. Effect of gate oxidation on resonance frequency.................................................83 III.B.4. Resonator encapsulation ......................................................................................83 III.B.5. Contact metallization and release ........................................................................84 III.B.6. Improvements of the silicon gate SG-MOSFET process.....................................85 III.C. PACKAGING PROCESS..................................................................................................86 III.C.1. Process flow.........................................................................................................86 III.C.2. Effect of opening size on releasing rate and clogging effect ...............................88 III.C.3. Packaging issues for production environment .....................................................89 III.C.4. Perspectives of the 0-level thin film packaging process ......................................90 III.D. FRONT-END PROCESS ..................................................................................................91 III.D.1. Lateral-gate Vertical-MOSFET architecture [104]..............................................91 III.D.2. Lateral-gate Horizontal-MOSFET architecture [105] .........................................92 III.D.3. Process flow and technological blocks validation ...............................................92 III.D.4. Perspectives of the Front-end process .................................................................94 III.E. CONCLUSION ...............................................................................................................95 REFERENCES .......................................................................................................................96 CHAPTER IV – RESONANT SG-MOSFET CHARACTERIZATIONS ........................99 IV.A. CHARACTERIZATION METHODOLOGY ......................................................................101 IV.A.1. Capacitive and MOSFET detection characterizations.......................................101 IV.A.1.a. Capacitive response of a RSG-MOSFET ....................................................102 IV.A.1.b. Transistor response and gain of the RSG-MOSFET ...................................103 IV.A.2. Comparison of capacitive and MOSFET detection on transmission response..105 IV.A.3. Characterization setup for bulk-mode RSG-MOSFET .....................................106 IV.A.4. Insertion loss and impedance matching.............................................................106 IV.A.5. Practical characterization methodology ............................................................107 IV.A.5.a. Impedance measurement setup....................................................................107 IV.A.5.b. Transmission measurement setup................................................................109 IV.B. ALSI-BASED RESONANT SG-MOSFET CHARACTERIZATIONS.................................109 IV.B.1. Quasi-Static characterizations ...........................................................................110 IV.B.2. Influence of the gate and drain voltages on the RSG-MOSFET response ........110 IV.B.2.a. Effect of gate voltage variation ...................................................................111 IV.B.2.b. Effect of drain voltage variation .................................................................112 IV.B.3. Non-linearities ...................................................................................................113 IV.B.4. Effect of air damping on quality factor..............................................................113 IV.B.5. Temperature effect.............................................................................................114 IV.B.6. Impact of resonator scaling on voltage-frequency dependency.........................115 IV.C. SILICON-BASED RESONANT SG-MOSFET CHARACTERIZATIONS............................115 IV.D. OSCILLATOR DESIGN ................................................................................................118 IV.D.1. Capacitive MEMS-based oscillator...................................................................118 IV.D.2. RSG-MOSFET based oscillator ........................................................................119 IV.E. CONCLUSIONS AND PERSPECTIVES...........................................................................120 REFERENCES .....................................................................................................................122 CHAPTER V – ABRUPT SWITCH AND MEMORY APPLICATIONS OF THE SGMOSFET...............................................................................................................................123 V.A. ABRUPT CURRENT SWITCH.........................................................................................125 V.A.1. SG-MOSFET switch...........................................................................................126 V.A.2. SG-MOSFET sub-threshold swing performance................................................128 V.A.3. Switch isolation ..................................................................................................129 V.A.4. Scaling perspectives............................................................................................130 V.A.5. Scaling of the switching current amplitude ........................................................132 V.A.6. SG-MOSFET switching speed ...........................................................................133 V.A.7. Conclusion and perspectives...............................................................................134 V.B. MEMS-BASED MEMORY ............................................................................................135 V.B.1. MEMS memory: State of the art .........................................................................135 V.B.2. Mechanical hysteresis-based memory ................................................................136 V.B.3. SG-MOSFET Memory: combining mechanical and electrical hysteresis ..........137 V.B.3.a. Operating principle ......................................................................................137 V.B.3.b. Amplitude of the memory effect ....................................................................139 V.B.3.c. Retention .......................................................................................................140 V.B.3.d. Cycling..........................................................................................................141 V.B.3.e. Effect of drain voltage on pull-in and pull-out effects ..................................142 V.B.3.f. Addressing .....................................................................................................143 V.B.3.g. Scalability .....................................................................................................144 V.B.4. Conclusion and perspectives...............................................................................144 REFERENCES .....................................................................................................................145 CHAPTER VI – SUMMARY AND OUTLOOK ..............................................................147 VI.A. SUMMARY OF MAIN ACHIEVEMENTS ........................................................................148 VI.B. OUTLOOK..................................................................................................................149 APPENDIX ...........................................................................................................................150 ACKNOWLEDGMENTS....................................................................................................151 CURRICULUM VITAE ......................................................................................................153 PUBLICATIONS..................................................................................................................154
منابع مشابه
Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کاملA Class E Power Amplifier with Low Voltage Stress
A new output structure for class E power amplifier (PA) is proposed in this paper. A series LC resonator circuit, tuned near the second harmonic of the operating frequency is added to the output circuit. This resonator causes low impedance at the second harmonic. The output circuit is designed to shape the switch voltage of the class E amplifier and lower the voltage stress of the transistor. T...
متن کاملDesign and Construction of a Sensorless Circuit for Brushless DC Motor using Third Harmonic back Electromotive Force
In this paper the method of sensorless startup of direct current brushless motor using third harmonic back Electromotive Force (EMF) and motor startup using microcontroller for pulse width modulation, power switch control and motor output analysis is presented which renders RPM control and high speed achievement for motor. The microcontroller is used for processor and MOSFETs are used for power...
متن کاملA New Design of Dual Band Phase Shifter using MEMS Technology
Abstract - This paper presents a new design of microwave microelectromechanical systems (MEMS) phase shifter for dual band wireless local area network (WLAN) applications. A bit is designed which product a constant phase shift of 11.25° by switching between two line that consist of 12 and 6 unitcells in each frequency band. A unitcell is constructed by gold membrane suspended over the coplanar ...
متن کاملSilicon Sacrificial Layer Dry Etching (SSLDE) for free-standing
A novel Silicon Sacrificial Layer Dry Etching (SSLDE) technique using sputtered amorphous or LPCVD polycrystalline silicon as sacrificial layers and a dry fluorine-based (SF6) plasma chemistry as releasing process is reported with a detailed experimental study of the release etching step. The process is capable of various applications in surface micromachining process, and can be applied in fab...
متن کامل